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A: Math. Gen., Vol. 9. NO. 3, 1976. Printed in Great Britain. 0 1976 I W  

COMMENT 

comment QD ‘semiclassical appro*ation of the radial 
eprrpfion with two=dimensional potentials’ 

D S F Crothers 
Department of Applied Mathematics and Theoretical Physics, The Queen’s University of 
Belfast, Belfast BT7 1”. Northern Ireland 

Received 6 October 1975, in h a 1  form 17 November 1975 

Abstract. It is shown that a subtle variation of the Zwaan-Stueckelberg technique, basedon 
semi-classical JWKB phase integrals and their analytic continuation in the complex plane 
yields the result of Berry and Ozorio de Almeida, concerning the semi-classical phase-shift 
and energy eigenvalue appropriate to the radial equation for two-dimensional potenrials in 
the case of s waves. 

1. htmdnction 

Rwntly, Berry and Ozorio de Almeida (1973, to be referred to as I) have considered 
hedelicate situation concerning the semi-classical JWKB approximztion for the radial 
equation in the case of two-dimensional potentials. Basically they found that for 
Swaves, Jefieys’ connexion formula could not be applied since the classical turning 
point coincided with the origin. This difficulty was resolved using a comparison- 
Won method based on the zero-order Bessel function. They found that the s wave 
phase-shift and bound-state energy eigenvalues were simply analytic continuations of 
thegeneral non-zero 1 wave formulae. 

we simply wish in this comment to derive their results using the more fundamental 
and direct Zwaan-Stueckelberg phase-integral technique of Crothers (1971, to be 
referred to as 11). 

FMY7we greatly simplify their approach in I, 0 2 concerning the free particle and the 
m a t e d  inner boundary condition in the case of s waves. Using their notation, 

V’ln R = O  (R f 0). (1) 

pntheOther hand, applyingthe theorem of Gauss to a cylinder of unit length, we obtain 
lnqbdhd coordinates 
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Wtbc 
where d7 is a volume element, dS is a curved surface element directed ouha& 
con~butions from the cylinder end sections cancel out. It follows that 

V2 In R = 27rS(R) 

s the delta function. Equation (3) means therefore that l n ~  is 
Schrodinger equation I( 1) at R = 0. Therefore, given that yo and 

behave logarithmically at the origin, &(R) of I(5) is only a solution of I(1)  if^ =O 
D = 0, a conclusion reached in I by somewhat different reasoning. However, 
reasoning is more direct and points to a method for fitting the inner b o u n d v a ~ h  

nn-Stueckelberg technique, which has two advantages. Firstly, we do not 
late the semi-classical phase integrals to the origin, where they become invalid, 

but merely trace their analytic, valid behaviour along a curve in the complex R plane, 
which circumvents the origin. Secondly, we force analyticity, which therefore automat. 
i d l y  excludes the In R type solutions and so automatically satisfies the inner boundary 
condition. 

n. Quite simply, In R is not an analytic function and therefore we 

We wish to solve semi-classically the equation 

(L ~ R - + E -  d V(R+ = 0. R d R  dR (4) 

Restricting ourselves to scattering, that is, E > 0, the semi-classical JWKB solution is 
given by 

{A exp[ijt(E- V(R)>'/'dR]+B exp[-iIt(E- V(R))'/*dRD 
R ' l2(E - V(R))'/" X =  

where A and B are arbitrary constants. However, for R sufficiently large, we can 
ignore V(R) so that 

Then R = 0 is a transition point and the Stokes lines emitting from it are given bv 
a g  R = f 7r/2. Assuming the principal branch of R 
sense, along a semi-circle of large radius in the complex plane, yields, on the nePG%R 
axis: 

and tracing x in the 

- - i l ~  \ - 1 / 2 [ ( ~  + c r ~ )  eim1/2 + B e-im1/2 1 (7) 

where a is the Stokes constant associated with the ~ / 2  line. But x is required t O b e a o  
even analytic function. Therefore it follows that 

-i(A +CUB) = B 

-iB = A  

which agrees with I(41). Similar considerations apply to the case of E<o* 
In retrospect, we may question the validity of expression (5 )  as the ~ s O 1 u t i o n o r  

equation (4). Why not apply the JWKB approximation to qo, as against X ?  This wd 
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merely have the effect of subtracting 1/4R2 from the potential V ( R )  in the 
8fW 5 first-order action integrals inherent in the JWKB approximation. In truth, 
gmdd not do, for the purely prapatic reason that the pole at R = 0 would then 

the Zero-order-action integral Io CE - V ( R )  +(1/4R')]'/' dR to be improperly e & However, there is an associated but more fundamental reason. Analyticity 
&not be forced and therefore such an approximate solution would not be accept- 
&. is most clearly seen by noting that 

I/' 

f0+) (E +&) dR = Ti (1 1) 

am&rhow distant the closed contour is from the origin. To see this, we may take the 
@-cut to join *i/2E'/', and we may use Cauchy principal values or map R to l/p 
a apply Cauchy's residue theorem. In short, analyticity breaks down because the 
*atR = 0 manifests itself in the form of e*" factors, following a positive circuit of the 
+. It may be observed that we have neglected V ( R )  in these latter arguments. 
m e r ,  normally we require limR+,, RV(R) to exist. This means that the effect of 
any singularity of V(R) ,  such as the weak singularity of the alnR potential of I, is 
g&iently ldized?' that our analyticity arguments and our basic statement, contained 
inthesentence embracing equation (6),  remain true; we should, of course, bear in mind 
that the behaviour of a logarithmic potential, as R + 43, is non-physical, in that we 
quire limR,, RV(R) to exist. 

In conclusion, we have derived the result of I by adopting the more general 
Zmn-Stueclcelberg phase integral technique rather than a specific comparison- 
equation method. The technique is essentially a reiteration of that used in I1 to derive 
&asymptotic behaviour of Pl(cos e). 

'ibe research reported was accomplished with the support of the US Office of Naval 
*ch, under Contract N00014-69-C-0035. 
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